I. ESTEQUIOMETRÍA

OBJETIVO: Identificará la trascendencia de la determinación de las cantidades de reactivos y productos involucrados en una reacción química valorando la importancia que tiene este tipo de cálculos en el análisis cuantitativo de procesos que tienen repercusiones socioeconómicas y ecológicas, con una actitud crítica y responsable.

CONTENIDO

1. Introducción a la Estequiometría

Objetivo: Aplicará el concepto de mol en las diferentes relaciones cuantitativas de las sustancias involucradas en las reacciones químicas

2. Cálculos estequiométricos

Ojetivo: Aplicará el método de relación molar en la solución de ejercicios que involucren cálculos estequiométricos.

2.1 Cálculos mol-mol 2.4 Volumen molar de un gas
2.2 Cálculos mol-gramo 2.4.1 Cálculos mol-volumen
2.3 Cálculos gramo-gramo 2.4.1 Cálculos gramos-volumen
Pasos para resolver un ejercicio estequiométrico (presentación) EJERCICIO 1.2
EJERCICIO 1.1 TAREA 1.2
TAREA 1.1  

3. Cálculos de reactivo limitante

Objetivo: Reconocerá la importancia de identificar el reactivo limitante en un proceso químicoa, cuantificando algunas reacciones involucradas en procesos industriales.

4. Porcentaje de rendimiento

Objetivo: Identificará la importancia del porcentaje de rendimiento de una reacción química y su repercución en los procesos químicos.

EJERCICIO 1.3
TAREA 1.3
Lectura: "Acido sulfúrico"
Mapa conceptual
Actividad I 1

1. Introducción a la Estequiometría

Sugerencia: Para estudiar con éxito esta unidad, es necesario que domine los contenidos de Reacciones Químicas del curso “Fundamentos de Química”, por lo que es muy recomendable que lo repase.

Método de relación molar

La ESTEQUIOMETRÍA. Es la parte de la química que estudia las relacionescuantitativasentre las sustancias que intervienen en una reacción química (reactivos y productos).

Estas relaciones pueden ser:

mol-mol
mol-gramos
gramos-gramos
mol-volumen
volumen-gramos
volumen-volumen

Las relaciones pueden ser: entre reactivos y productos, sólo entre reactivos o sólo entre productos.

Cualquier cálculo estequiométrico que se lleve a cabo, debe hacerse en base a una ecuación químia balanceada, para asegurar que el resultado sea correcto.

La parte central de un problema estequiométrico es el FACTOR MOLAR cuya fórmula es:

Los datos para calcular el factor molar se obtienen de los COEFICIENTES EN LA ECUACIÓN BALANCEADA.

La sustancia deseada es la que se presenta como la incógnita y que puede ser en moles, gramos o litros; la sustancia de partida se presenta como dato y puede ser en: moles, gramos o litros.

Para diferenciar el factor molar de los factores de conversión, se utilizan [corchetes] para indicar el factor molar y (paréntesis) para los factores de conversión.

2. Cálculos estequiométricos

2.1 Cálculos mol-mol.

En este tipo de relación la sustancia de partida está expresada en moles, y la sustancia deseada se pide en moles.

En los cálculos estequiométricos los resultados se reportan redondeándolos a dos decimales. Igualmente, las masas atómicas de los elementos, deben utilizarse redondeadas a dos decimales.

Recordando: Para redondear con dos decimales, usamos como base el tercer decimal. Si este es mayor o igual a 5, aumentamos una unidad al segundo decimal; si es menor o igual a 4 se conservara lacifra del segundo decimal.

Ejemplos:

Número

Valor redondeado a dos decimales

15.28645

15.29

3.1247865

3.12

20.0054

20.01

155.49722

155.50

Ejemplos:

Para la siguiente ecuación balanceada::

Calcule:

a) ¿Cuántas mol de aluminio (Al) son necesarios para producir 5.27 mol de Al2O3?

PASO 1

Balancear la ecuación

Revisando la ecuación nos aseguramos de que realmente está bien balanceada. Podemos representar en la ecuación balanceada el dato y la incógnita del ejercicio.

PASO 2

Identificar la sustancia deseada y la de partida.

Sustancia deseada
El texto del ejercicio indica que debemos calcular las moles de aluminio, por lo tanto esta es la sustancia deseada. Se pone la fórmula y entre paréntesis la unidad solicitada, que en este caso son moles.

Sustancia deseada: Al (mol)

Sustancia de partida:
El dato proporcionado es 5.27 mol de óxido de aluminio (Al2O3) por lo tanto, esta es la sustancia de partida. Se anota la fórmula y entre paréntesis el dato.

Sustancia de partida: Al2O3 (5.27 mol)

PASO 3

Aplicar el factor molar

Las moles de la sustancia deseada y la de partida los obtenemos de la ecuación balanceada.

Se simplifica mol de Al2O3 y la operación que se realiza es

Señale claramente el resultado final. La respuesta es:10.54 mol de Al

b) ¿Cuántas moles de oxígeno (O2) reaccionan con 3.97 moles de Al?

PASO 1: La ecuación está balanceada

PASO 2:

Sustancia deseada: O2 (mol)

Sustancia de partida: Al (3.97 mol)

PASO 3:

Aplicar el factor molar

Recordamos la ecuación que estamos utilizando:

Simplificamos mol de Al y resolviendo la operación

2.9775, redondeando a dos decimales, la respuesta es 2.98 mol de O2.

2.2 Cálculos mol-gramo

En este tipo de cálculos se involucran los gramos en la sustancia deseada o en la de partida, y la otra sustancia se expresa en moles.

2.3 Cálculos gramo-gramo

En estos ejercicios tanto la sustancia deseada como la de partida se expresan en gramos.

Ejemplos que involucran gramos:

1. Para la ecuación mostrada calcule:

a) Mol de Mg(OH)2 (hidróxido de magnesio) que se producen a partir de 125 g de agua.

b) Gramos de Mg3N2 (nitruro de magnesio) necesarios para obtener 7.11 mol deNH3 (amoniaco).

En el Mg3N2 (nitruro de magnesio) el coeficiente es 1, por lo que no debe escribirse.

a) Moles de Mg(OH)2 (hidróxido de magnesio) que se producen a partir de 125 g de agua.

PASO 1

Revisar que la ecuación esta correctamente balanceada.

 PASO 2

Sustancia deseada: Mg(OH)2 (hidróxido de magnesio ) en MOL

Sustancia de partida: H2O (agua) 125 g

PASO 3

La sustancia de partida, agua, está expresada en gramos y no en moles, por lo tanto, no se puede aplicar directamente el factor molar. Es necesario realizar una conversión a moles. Para efectuarlo debemos calcular la masa molecular del agua.

Recordando: Para obtener la masa molecular, multiplicamos el número de átomos de cada elemento por su masa atómica y las sumamos.

H2O

H

2

x

1.01

=2.02

O

1

x

16

= 16+

 

 

 

 

18.02 g

Para convertir a moles:

Ahora como ya tenemos el dato de la sustancia de partida en moles, podemos aplicar el factor molar. Recuerde que los datos del factor molar se obtienen de la ecuación balanceada.

PASO 4

Cancelamos moles de H2O y obtenemos moles de Mg(OH)2, que son las unidades de la sustancia deseada, y la respuesta es: 3.47 mol Mg(OH)2 .

b) Gramos de Mg3N2 (nitruro de magnesio) necesarios para obtener 7.11 moles deNH3 (amoniaco).

Como este el segundo inciso, empezamos en el paso 2.

PASO 2

Sustancia deseada: Mg3N2 (nitruro de magnesio) gramos

Sustancia de partida: NH3 (amoniaco). 7.11 mol

PASO 3

Aplicamos directamente el factor molar porque el dato de la sustancia de partida está en moles:

PASO 4

Con el factor molar calculamos la sustancia deseada en mol, pero las unidades de la sustancia deseada son gramos de Mg3N2 por lo que debemos introducir un factor de conversión de mol-gramos. Primero calculamos la masa molecular del Mg3N2.

Mg3N2

Mg

3

x

24.31

=72.93

N

2

x

14.01

=28.02 +

 

 

 

 

100.05g

Factor de conversión:

De esta forma obtenemos el resultado que es:356.18 g Mg3N2

2. De acuerdo con la siguiente ecuación balanceada:

a) ¿Cuántos gramos de H3PO4 (ácido fosfórico) reaccionan con 5.70 mol de Ca(OH)2?

b) ¿Cuántas mol de agua se producen si se obtienen 500 g de Ca3(PO4)2 (fosfato de calcio)?

c) ¿Cuántos gramos de H3PO4 (ácido fosfórico) son necesarios para producir 275 g de agua?

En cada inciso identificaremos el tipo de relación.

a) ¿Cuántos gramos de H3PO4 (ácido fosfórico) reaccionan con 5.70 mol de Ca(OH)2?

PASO 1: La ecuación está correctamente balanceada

PASO 2:

Sustancia deseada: H3PO4 (ácido fosfórico) g

Sustancia de partida: Ca(OH)2 (hidróxido de calcio) 5.70 mol

Relación gramos-mol

PASO 3

Aplicamos directamente el factor molar porque el dato de la sustancia de partida son MOL.

 PASO 4

La sustancia deseada calculada en mol, debe convertirse agramos, utilizando un factor de conversión con la masa molecular del H3PO4.

H

3

x

1.01

=3.03

P

1

x

30.97

=30.97

O

4

X

16.00

=64.00+

 

 

 

 

98.00 g

Factor de conversión:

El resultado es: 37.24 g H3PO4

b) ¿Cuántas mol de agua se producen al obtener 500 g deCa3(PO4)2 (fosfato de calcio)?

PASO 2

Sustancia deseada: H2O (agua) mol

Sustancia de partida: Ca3(PO4)2 (fosfato de calcio) 500 g

Relación mol-gramos

PASO 3

La sustancia de partida está en gramos, debemos convertir a mol utilizando la masa molecular de dicha sustancia.

Ca3 (PO4)2

Ca

3

x

40.08

=120.24

P

2

x

30.97

=61.94

O

8

x

16.00

=128.00+

 

 

 

 

310.18 g

Factor de conversión:

 

Aplicamos el factor molar de acuerdo a los coeficientes de la sustancia de partida y la deseada que se muestran en la ecuación balanceada.

La respuesta son mol de H2O y el resultados es: 9.66 mol H2O

c) ¿Cuántos gramos de H3PO4 (ácido fosfórico) son necesarios para producir 275 g de agua?

PASO 1:

Ecuación ya balanceada.

PASO 2:

Sustancia deseada: H3PO4 (ácido fosfórico) gramos

Sustancia de partida: H2O (agua)275 g

Relación gramo-gramo

PASO 3

Como la sustancia deseada no son moles, calculamos el peso molecular para poder realizar la conversión de gramos a moles.

H2O

H

2

x

1.01

= 2.02

O

1

x

16.00

= 16.00+

 

 

 

 

=18.02 g

Factor de conversión:

Aplicamos el factor molar:

Incluimos un factor de conversión de mol-gramo utilizando la masa molecular de H3PO4.

H3PO4

H

3

x

1.01

=3.03

P

1

x

30.97

=30.97

O

4

x

16.00

=64.00+

 

 

 

 

98.00 g

Factor de conversión:

El factor de conversión nos permite dar el resultado del ejercicio que es: 498.82 g H3PO4

Pasos básicos para resolver un ejercicio de estequiometría.

EJERCICIO 1.1

Resuelva en su cuaderno el siguiente ejercicio.

Para la siguiente ecuación balanceada:

Calcule:

a) ¿Cuántas mol de Cu(NO3)2 (nitrato de cobre II) se producen a partir de 5.50 mol de HNO3 (ácido nítrico)?

¿Cuántos gramos de CuS (sulfuro de cobre II) son necesarios para producir 8.17 mol de S (azufre)?

¿Cuántas mol de NO (monóxido de nitrógeno) se producen cuando se obtienen 175 g de H2O (agua)?

¿Cuántos gramos de HNO3 (ácido nítrico) reaccionan con 225 g de CuS (sulfuro de cobre)?

Reporte sus respuestas redondeando a dos decimales y utilice las masas atómicas también redondeadas a dos decimales.

Revise sus respuestas.

TAREA 1.1

Resuelva el siguiente ejercicio. Reporte sus respuestas redondeando a dos decimales y utilice las masas atómicas también redondeadas a dos decimales. Envié sus respuestas al correo electrónico del profesor y entregue sus procedimientos en la fecha señalada por él.

De acuerdo con los datos mostrados en la siguiente ecuación balanceada:

a) ¿Cuántas mol de Na3PO4 (fosfato de sodio) reaccionan con5.45 moles de CaCl2 (cloruro de calcio)?

b) ¿Cuántos gramos de Ca3(PO4)2 (fosfato de calcio) se producen a partir de 230 g de CaCl2 (cloruro de calcio)?

c) ¿Cuántas mol de de Na3PO4 (fosfato de sodio) son necesarias para producir 150 g de NaCl (cloruro de sodio)?

d) ¿Cuántos gramos de NaCl (cloruro de sodio) se producen al obtener 210 g de Ca3(PO4)2 (fosfato de calcio)?

2.4 Volumen molar de un gas

 El volumen molar de un gases el volumen que ocupa un gas a condiciones normales (C.N.) o condiciones estándar (STP) de temperatura y presión.

Estas condiciones son:

T = 0°C = 273 K

P = 1 atm =760 mm de Hg = 760 torr

Este volumen es fijo y constante para estas condiciones. Como el valor es por cada mol de gas, se puede obtener la siguiente equivalencia:

1 MOL DE GAS = 22.4 LITROS (l)

De esta equivalencia podemos obtener los factores de conversión:

2.4.1 Cálculos mol-volumen

Para realizar un cálculo estequiométrico con volumen son necesarias dos condiciones:

Ejemplo:

La siguiente ecuación balanceada, muestra la descomposición del clorato de potasio por efecto del calor. Suponiendo que la reacción se efectúa a condiciones normales de temperatura y presión:

a) ¿Cuántasmol de KClO3 (clorato de potasio) son necesarios para producir 25 l de O2?

PASO 1

Revisamos la ecuación y encontramos que está balanceada.

PASO 2

Sustancia deseada: KClO3 mol

Sustancia de partida: O2 25 l

PASO 3

Es necesario convertir los 25 l de la sustancia de partida para aplicar el factor molar.

1 MOL = 22.4 LITROS

Utilizamos el factor molar porque la sustancia de partida está expresada en moles.

Directamente del factor molar obtenemos la respuesta que es: 0.75 mol KClO3

b) ¿Cuántos litros de O2 se producen si se obtienen 5.11 moles de KCl (cloruro de potasio)?

PASO 1

La ecuación está balanceada

PASO 2

Sustancia deseada: O2 litros

Sustancia de partida: KCl 5.11 mol

PASO 3

Podemos directamente aplicar el factor molar porque tenemos moles de la sustancia de partida.

PASO 4

Con el factor molar calculamos moles, por tanto es necesario utilizar el volumen molar para efectuar la conversión.

La respuesta es 171.8 L O2.

2.4.2 Cálculos gramos-volumen

Ejemplo:

La siguiente ecuación balanceada, muestra la combustión del propano y se efectúa a condiciones estándar de temperatura y presión.

a) ¿Cuántos gramos de C3H8 (propano) reaccionan con 50 litros de O2 (oxígeno)?

b) ¿Cuántos litros de CO2 (bióxido de carbono) se producen a partir de 130 g de C3H8 (propano)?

c) ¿Cuántos gramos de agua se obtienen al producirse 319 litros de CO2 (bióxido de carbono)?

a) ¿Cuántos gramos de C3H8 (propano) reaccionan con 50 L de O2 (oxígeno)?

PASO 1

Revisamos y encontramos que la ecuación está balanceada.

PASO 2

Relación: gramos-litros

Sustancia deseada: C3H8 g

Sustancia de partida: O2 50 l

PASO 3

Como la sustancia de partida son litros convertimos a moles para aplicar el factor molar. Utilizamos el volumen molar de un gas para realizar la conversión.

Ahora aplicamos el factor molar:

PASO 4

Convertimos las moles de la sustancia deseada (propano) a gramos utilizando el peso molecular.

C3H8

C

3

x

12.01

= 36.03

H

8

x

1.01

=8.08+

 

 

 

 

44.11 g

Factor de conversión:

La respuesta es: 19.85 g C3H8

b) ¿Cuántos l de CO2 (bióxido de carbono) se producen a partir de 130 g de C3H8 (propano)?

PASO 2

Relación: litros-gramos

Sustancia deseada:CO2 l

Sustanciade partida: C3H8 130 g

PASO 3

Como la sustancia de partida son gramos, convertimos a moles utilizando la masa molecular del propano, la cual calculamos en el inciso a) y es de 44.11 g.

I

Aplicamos el factor molar:

PASO 4

Convertimos a litros utilizando el volumen molar de un gas.

La respuesta es: 198.24 l CO2

c) ¿Cuántos gramos de agua se obtienen si se producen 319 litros de CO2 (bióxido de carbono)?

PASO 2

Relación: gramos-litros

Sustancia deseada: H2O (agua)g

Sustancia de partida: CO2 (bióxido de carbono) 319 l

PASO 3

Como la sustancia de partida (CO2) son litros, es necesario convertir a moles.

Aplicamos el factor molar:

PASO 4

Incluimos un factor de conversión de moles a gramos utilizando la masa molecular del agua.

H2O

H

2

x

1.01

=2.02

O

1

x

16.00

= 16.00+

 

 

 

 

18.02 g

La respuesta es: 342.20 g H2O

EJERCICIO 1.2

La siguiente ecuación balanceada, se lleva a cabo a condiciones normales de temperatura y presión, y representa la combustión de etano:

Calcule:

a) Mol de C2H6 (etano) necesarias para producir 75 L de CO2 (bióxido de carbono).

b)A partir de 11.7 mol de O2 (oxígeno molecular) ¿cuántos L de agua se obtienen?

c) Si se hacen reaccionan 225 g de C2H6 (etano) con un exceso de oxígeno, ¿cuántos L de CO2 (bióxido de carbono) se producen?

d) Si se producen 25 L de CO2, ¿cuántos g de agua se obtienen?

Revise sus respuestas

 TAREA # 1.2

Resuelva el siguiente ejercicio y envíelo al correo electrónico de su profesor.

La siguiente ecuación muestra la combustión del metanol.

Suponiendo que la ecuación se lleva a cabo en condiciones estándar de presión y temperatura:

a) ¿Cuántas moles de O2 (oxígeno gaseoso) reaccionan con 135 litros de CH3OH (metanol)?

b) ¿Cuántos litros de metanol son necesarios para producir 75.0 g de CO2 (bióxido de carbono)?

c) ¿Cuántos gramos de bióxido de carbono se producen si se obtienen 50.7 litros de vapor de agua?

d) ¿Cuántos litros de vapor de agua se producen a partir de 25.50 litros de oxígeno gaseoso?

3. Cálculos de reactivo limitante

En una reacción química no necesariamente se consume la totalidad de los reactivos. Generalmente alguno de ellos se encuentra en exceso. El otro reactivo, que es el que se consume totalmente se conoce como reactivo limitante.

Para que una reacción se lleve a cabo debe haber sustancias (reactivos) capaces de reaccionar para formar los productos, pero basta que uno solo de los reactivos se agote para que la reacción termine.

En los procesos industriales generalmente se usa un exceso el reactivo mas barato y fácil de conseguir, y se selecciona como limitante el más caro o difícil de conseguir.

Ejemplo

El proceso Haber para producción de amoniaco se representa mediante la siguiente ecuación balanceada:

a) A partir de 100 g de N2 y 100 g H2. ¿cuántos g de NH3 (amoniaco) se obtienen?

b) ¿Cuál el reactivo limitante y cuál el reactivo en exceso?

c) Calcule la cantidad de g de reactivo en exceso que quedan al final de la reacción.

PASO 1

Revisar si la ecuación está balanceada.
En este caso la ecuación se muestra ya balanceada.

PASO 2

Calcular la mol de producto señalada (sustancia deseada) que se forman con cada reactivo siguiendo los pasos indicados anteriormente para la solución de los ejercicios de estequiometría.

Iniciamos el cálculo con los 100 g de N2, y podríamos representar esta parte en la ecuación, de la siguiente forma:

Sustancia deseada: NH3 g

Sustancia de partida: N2 100 g

Calculamos la masa molecular del nitrógeno para convertir a moles y poder aplicar el factor molar.

N2

2 x 14.01 = 28.02 g

Ahora realizamos el mismo procedimiento pero a partir de los 100 g de H2.

H2

2 x 1.01 = 2.02 g

Ahora comparamos los resultados:

A partir de 100 g de H2:

60.75 moles NH3

A partir de 100 g de N2:

7.14 moles NH3

El reactivo limitante es el N2, porque a partir de él se obtiene el menor número de moles. Solo resta convertir esa cantidad de moles a gramos, ya que la unidad de la sustancia deseada es gramos.

NH3

N

1

x

14.01

=

14.01

H

3

x

1.01

=

3.03 +

 

 

 

 

 

17.04 g

Se producen 121.67 g de NH3

b) ¿Cuál el reactivo limitante y cuál el reactivo en exceso?

Reactivo limitante: N2

Reactivo en exceso: H2

En el momento en que el nitrógeno se consume totalmente la reacción termina, por eso la cantidad de producto depende de éste reactivo.

Para este proceso es más conveniente utilizar exceso de nitrógeno para que el reactivo limitante sea el hidrógeno, ya que el nitrógeno es un reactivo más barato y más fácil de conseguir. En el aire aproximadamente el 78.09% es nitrógeno.

c) Calcule la cantidad de gramos de reactivo en exceso que quedan al final de la reacción

Reaccionan 100 g de N2 (3.57 moles) y parte del hidrógeno queda sin reaccionar. Para encontrar los gramos de hidrógeno que no reaccionan, es necesario calcular cuántos gramos de hidrógeno que reaccionaron con 3.57 moles de nitrógeno. Conviene más utilizar el dato en moles, para poder aplicar en forma directa el factor molar y después convertimos las moles de hidrógeno obtenidas a gramos.

Utilizamos la masa moleculardel H2 calculada anteriormente: 2.02 g, para convertir moles a gramos.

Reaccionaron 21.63 g H2 y la cantidad inicial era de 100 g, por lo tanto restamos para obtener los gramos en exceso de hidrógeno.

100 g – 21.63 g = 78.37 g de hidrógeno en exceso.

La respuesta es:

Quedan 78.37 g de H2 en exceso

 4. Porcentaje de rendimiento.-

Cuando una reacción química se lleva a cabo, son muchos los factores que intervienen, y generalmente la cantidad de producto que se obtiene en forma real es menor que la que se calcula teóricamente. El porcentaje de rendimiento es una relación entre la producción real y la teórica expresada como porcentaje.

El porcentaje de rendimiento depende de cada reacción en particular. Hay reacciones con un alto % de rendimiento y otras donde el rendimiento es relativamente pobre.

Ejemplo

En base a la siguiente ecuación balanceada:

a) ¿Cuántos gramos de NaCl (cloruro de sodio) se obtienen sí reaccionan 20.0 g de NaHCO3 (bicarbonato de sodio) con 17.6 g de HCl (ácido clorhídrico)?

b) ¿Cuál es el porcentaje de rendimiento de la reacción si se obtuvieron realmente 13.9 g de NaCl?

Primero calculamos la producción de cloruro de sodio a partir de 20.0 g del NaHCO3 (bicarbonato de sodio).

 NaHCO3

Na

1

x

22.99

=

14.01

H

1

x

1.01

=

1.01

C

1

x

12.01

=

12.01

O

3

x

16.00

=

48.00 +

 

 

 

 

 

75.03 g

 

Ahora calculamos las moles de cloruro de sodio a partir de 17.6 g de HCl.

H

1

x

1.01

=

1.01

Cl

1

x

35.45

=

35.45 +

 

 

 

 

=

36.46 g

Comparamos nuestros resultados:

A partir de NaHCO3

0.27 mol de NaCl

A partir del HCl

0.48 mol de NaCl

El reactivo limitante es el NaHCO3 (bicarbonato de sodio), ya que con este reactivo se obtienen menos moles de NaCl (cloruro de sodio). Solo resta convertir estas moles a gramos.

NaCl

Na

1

x

22.99

=

22.99

Cl

1

x

35.45

=

35.45 +

 

 

 

 

=

58.44 g

Se producen 15.78 g de NaCl

b) ¿Cuál es el porcentaje de rendimiento de la reacción si se obtuvieron realmente 13.9 g de NaCl?

Aplicando la fórmula del porcentaje de rendimiento:

Ejemplo

Al agregar un trozo de fósforo a bromo líquido la reacción es inmediata y libera calor. Si se mezclan 5.00 g de P4 (fósforo) con40.5 g de Br2 (bromo líquido),

a) ¿Quién es el reactivo limitante?

b) ¿Cuántos gramos de PBr3 (tribromuro de fósforo) se forman?

c) ¿Cuántos gramos de reactivo en exceso quedaron al terminar la reacción?

d) Si la producción real es 37.5 g de PBr3, ¿cuál es el porcentaje de rendimiento?

La ecuación balanceada se muestra a continuación:

Primer calculamos las moles de tribroumero de fósforo.a partir de 5.00 g de P4. para calcular

P4

P 4 x 30.97 g = 123.88 g

 

Ahora utilizamos los 40.5 g de Br2. para calcular las moles de tribromuro de fósforo.

Br2

Br 2 x 79.90 = 159.80 g

A partir de P4

0.16 mol de PBr3

A partir del Br2

0.17 molde PBr3

a) ¿Quién es el reactivo limitante?

El reactivo limitante es el P4.

b) ¿Cuántos gramos de PBr3 (tribromuro de fósforo) se forman?

Convertimos las 0.16 moles de PBr3 a gramos.

PBr3

P

1

x

30.97

=

30.97

Br

3

x

70.90

=

212.7

 

 

 

 

=

243.67 g

Se producen 38.99 g de PBr3

c) ¿Cuántos gramos de reactivo en exceso quedaron al terminar la reacción?

Calculamos los gramos de Br2 que reaccionan para producir 38.99 gramos de PBr3, para posteriormenterestarlos de los 40.5 g de Br2 que había inicialmente.

De los cálculos anteriores tomamos el dato de que 38.99 g de PBr3 son 0.16 moles. Aplicamos el factor molar.

Incluimos un factor de conversión de moles a gramos con la masa molecular del Br2.

Br2.

Br 2 x 70.90 = 141.80 g

40.5 g Br2– 34.03 g Br2=

6.47 g de Br2 están en exceso

d) Si la producción real es 37.5 g de PBr3, ¿cuál es el porcentaje de rendimiento?

EJERCICIO 1.3

Resuelva en su cuaderno los siguientes ejercicios en forma clara y detallada. Se proporcionan los resultados en la sección de respuestas con la finalidad de que usted los corrobore.

1. La siguiente ecuación balanceada muestra la preparación deAl2O3 (óxido de aluminio) calentando 225 g de óxido de cromo II con 125 g de aluminio.

a) ¿Cuántos gramos de óxido de aluminio se forman?

b) ¿Quién es el reactivo limitante?

c) ¿Cuántos gramos de reactivo en exceso quedan después de la reacción?

d) ¿Cuál es el porcentaje de rendimiento de la reacción si se producen 90.0 g?

2. De acuerdo a la siguiente ecuación balanceada:

a) ¿Cuántos litros de CO2 (bióxido de carbono) se obtienen a partir de 150 g de carbono y 95.0 g de SO2 (dióxido de azufre)?

b) ¿Cuál es el reactivo limitante?

c) ¿Cuántos gramos de reactivo en exceso quedan al finalizar la reacción?

d) Si se producen 15 l de CO2 ¿cuál es el porcentaje de rendimiento de la reacción?

Revise sus respuestas

TAREA # 1.3

Resuelva los siguientes ejercicios en hojas blancas tamaño carta, detallando sus procedimientos. Envíe sus respuestas al correo electrónico del profesor y entregue sus procedimientos en la próxima sesión.

1. En base a la siguiente ecuación:

a) ¿Cuántos litros de O2 (oxígeno molecular) reaccionan con 125.0 g de NH3 (amoniaco)?

b) ¿Cuántos gramos de NH3 son necesarios para producir 250 litros de NO (monóxido de nitrógeno)?

c) ¿Cuántos litros de NO (monóxido de nitrógeno) se producen cuando reaccionan 75.0 g de NH3y 15 litros de O2?

d) ¿Cuál es el reactivo limitante?

2. La siguiente ecuación balanceada representa la segunda etapa del Proceso Ostwald para producir ácido nítrico.

a) ¿Cuántos gramos de agua son necesarios para producir 250 g de HNO3 (ácido nítrico)?

b) Si se mezclan 25 litros de NO2 y 50 g de agua, ¿cuántos gramos de HNO3 se obtienen?

c) ¿Cuál es el reactivo limitante?

d) Suponiendo que el rendimiento teórico del ácido nítrico es 249 kg y el rendimiento real es de 238 kg, ¿cuál es el porcentaje de rendimiento de la reacción?

Lectura
Lea el texto titulado "Ácido sulfúrico" y escriba un comentario. Envíelo al correo electrónico de su profesor.

Conteste la actividad I 1, referente al tema de "Estequiometría".